Glitch Gremlin AI
  • 👹 Glitch Gremlin AI - Embrace The Chaos!
  • High-Level Architecture
    • GlitchGremlinProgram (On-Chain)
      • Data Structures and Accounts
    • Off-Chain AI Engine
      • AI Modules
  • 🤖 Chaos-as-a-Service (CaaS)
  • Security and Abuse Prevention
  • Token Mechanics and Distribution
    • Token Details
    • Token Utility
  • Governance and Community Chaos Challenges
  • Roadmap & Milestones
  • Developer Tools and Documentation
    • Getting Started
    • Audit Preparation
    • SDK Reference
    • CLI Tools
    • Test Types
    • Governance Features
    • AI Listener Service Setup
    • AI-Driven Vulnerability Detection
    • Monitoring
    • AI Workflow
    • zkVM Integration
Powered by GitBook
On this page
  • End-to-End User Workflow
  • Workflow Diagram
  • Key Considerations
  1. Developer Tools and Documentation

AI Workflow

End-to-End User Workflow

1. Wallet Connection

  • User connects Solana wallet (Phantom, Solflare, etc.)

  • SDK verifies wallet connection and balance

  • User approves token allowance for Glitch Gremlin operations

2. Chaos Request Creation

  1. User selects test parameters:

    • Target program address

    • Test type (Fuzz, Load, Exploit, Concurrency)

    • Duration (60-3600 seconds)

    • Intensity (1-10 scale)

  2. SDK validates parameters

  3. User approves token transfer for test fee

  4. On-chain:

    • ChaosRequest account created

    • Tokens escrowed

    • Request marked as Pending

3. Off-Chain Processing

  1. AI Engine picks up request from queue

  2. Spins up test environment:

    • Local test validator

    • Forked mainnet environment

    • Containerized malicious traffic simulation

  3. Executes test scenario based on parameters

  4. Records metrics:

    • Transaction throughput

    • CPU usage

    • Error logs

    • Discovered vulnerabilities

4. Result Finalization

  1. AI Engine signs proof of completion

  2. On-chain:

    • ChaosRequest status updated

    • Tokens released/refunded

    • Results reference stored (IPFS/Arweave)

  3. Off-chain:

    • Detailed logs stored

    • Metrics analyzed

    • Vulnerability report generated

5. User Notification

  1. SDK monitors request status

  2. User receives notification when complete

  3. Results available through:

    • SDK methods

    • CLI tools

    • Web interface

Workflow Diagram

```mermaid
sequenceDiagram
    participant User
    participant Wallet
    participant SDK
    participant Blockchain
    participant AIEngine
    
    User->>Wallet: Connect
    Wallet->>SDK: Approve connection
    User->>SDK: Create chaos request
    SDK->>Blockchain: Validate & create request
    Blockchain->>SDK: Request created
    SDK->>AIEngine: Add to queue
    AIEngine->>AIEngine: Execute test scenario
    AIEngine->>Blockchain: Finalize request
    Blockchain->>SDK: Update status
    SDK->>User: Notify completion
    User->>SDK: Retrieve results
```

Key Considerations

Rate Limiting

  • Max 10 requests per minute per user

  • Minimum 2 seconds between requests

  • Max 1M tokens escrowed per request

Security

  • Multisig control for critical operations

  • Signed proofs from AI engine

  • Comprehensive error handling

Monitoring

  • Real-time status updates

  • Detailed test metrics

  • Vulnerability reports

PreviousMonitoringNextzkVM Integration

Last updated 5 months ago